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Abstract
I am concerned with two views of quantum mechanics that John S Bell called
‘unromantic’: spontaneous wavefunction collapse and Bohmian mechanics.
I discuss some of their merits and report about recent progress concerning
extensions to quantum field theory and relativity. In the last section, I speculate
about an extension of Bohmian mechanics to quantum gravity.

PACS numbers: 03.65.Ta, 03.70.+k

1. On the merits of the ‘unromantic pictures’

The quotation in the title is taken from a classic article of John S Bell on ‘Six possible
worlds of quantum mechanics’ [6]. He describes, discusses and comments on six views of
quantum mechanics, three of which he calls ‘romantic’: complementarity, consciousness as the
cause of wavefunction collapse, and the many-worlds view. And three he calls ‘unromantic’:
pragmatism, spontaneous wavefunction collapse, and Bohmian mechanics. This paper is about
the latter two views. These two unromantic pictures both fit into the category of ‘quantum
theories without observers’ (which also was a title of two conferences, in 1995 and 2004, and
of three articles [5, 40, 63]). In their unromantic attitude, they reject the idea that anything
incomprehensible, or unanalysable, or mysterious, or philosophical, is going on in a quantum
measurement, and replace the vague talk usually surrounding the analysis of the measurement
process by precise mathematics. And they dispense with observers in the sense that their
fundamental formulations are not about the subjective experience of observers when making
such-and-such experiments, but instead about (what they suggest as) objective physical reality.

Bohmian mechanics [4, 11, 13, 41] takes the word ‘particle’ literally and postulates that
there are pointlike entities moving around in space, governed by an equation of motion, and
thus have an actual and precise position at every time. These particles are the objective
physical reality.

Among the collapse theories, I will focus on the simplest (and perhaps best-known)
one, the Ghirardi–Rimini–Weber (GRW) theory [37]. In this theory, the unitary Schrödinger
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evolution is replaced by a nonlinear, stochastic evolution for the wavefunction. Two versions
of this theory are known, differing in their ontologies: according to ‘GRWm’, matter is
continuously distributed, while according to ‘GRWf’, matter consists of discrete spacetime
points.

Before I give the equations of these theories in section 2, I will say in this section a few
things about their relation to quantum mechanics. In section 3, I will report recent progress
concerning the extension of Bohmian mechanics and the GRW theory to quantum field theory
and relativity. In section 4, I close in a more speculative way, with a proposal for how to
incorporate gravity into Bohmian mechanics.

1.1. Quantum mechanics does not make predictions, it is the prediction

Observers are, in quantum theories without observers, not the protagonists of the axioms but
merely particular physical systems governed by the same laws as any other physical system.
The statement that observers will see this and this if they make such-and-such experiments
then is a theorem, not an axiom. For example, it has been shown [4, 13, 31, 32] that observers
in a typical Bohmian universe will see results of their experiments that appear random, with
frequencies in agreement with the probability laws of quantum mechanics.

This last statement is interesting. Put in other words, the formalism summarizing
the predictions of Bohmian mechanics about observable effects agrees with the quantum
formalism. Put succinctly, Bohmian mechanics implies the quantum formalism. If we regard,
as it is often done, quantum mechanics as merely a set of rules for computing the possible
outcomes of experiments and their probabilities, then quantum mechanics is the prediction
of Bohmian mechanics. Bohmian mechanics makes predictions in the sense that it describes
a model universe, for which the ‘predictions’ are statements about what intelligent beings in
that universe observe. Quantum mechanics, for comparison, does not make predictions in
this sense since it does not provide any model for the reality behind the appearances. For
further comparison, the GRWm and GRWf theories also make predictions, indeed identical
predictions [2], but predictions that differ from quantum mechanics. (The deviation is in most
cases extremely small [7, 37], and the other cases are difficult to arrange. As a consequence,
no experiment so far has been able to test the GRW theories against quantum mechanics [3].)
The deviation underlines that the predictions do not have to agree with quantum mechanics
just because the theory involves a wavefunction.

The two unromantic pictures, Bohmian mechanics and spontaneous collapse, make it
evident that quantum mechanics can be understood in terms of a completely coherent theory
with a clear ontology. Regrettably, more than 50 years after Bohm and 20 years after GRW, this
is still not very widely known. Given how vague and incoherent orthodox quantum philosophy
is, and how radical the claims are that it makes about the intrinsic impossibility to understand
physics, one might expect that scientists accept it only if they have to, under the load of
incontrovertible evidence. One might thus expect that scientists would immediately give up
orthodox quantum philosophy when they learn that theories exist that are understandable and
account for all phenomena of quantum mechanics. But historically, the opposite was the case.
When David Bohm argued in 1952, perhaps for the first time convincingly, that Bohmian
mechanics accounts for quantum mechanics in terms of objective, but non-classical, particle
trajectories, the reception was cold. What is it that motivates scientists, rational people who
take pride in their ability to understand the most intricate theories, to give up on any serious
understanding of quantum mechanics, in favour of the obscure orthodox quantum doctrine?
I do not claim to be able to answer this question from the armchair. Indeed, I think that to
determine the answer is a research topic for sociologists of science, and a worthwhile one.
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However, I would like to take you on a brief excursion in the following two subsections
and consider two possible motivations.

1.2. Positivism

It is often taken as an objection against Bohmian mechanics that it entails the existence of
unmeasurable quantities. For example, the velocity of a Bohmian particle cannot be measured
if we do not know the wavefunction. What cannot, not even in principle, be measured, I hear
physicists say, cannot belong to a scientific theory. Rather, it is to be regarded like angels,
ghosts, or the ether. I would categorize this position as exaggerated positivism, and I find this
argument surprising because quantum physicists should know first, of all scientists, that it is
wrong.

The quantum formalism itself entails that nature can keep a secret, in the sense that there
exist some facts that cannot be revealed by any experiment. To see how, we start from the
mathematical fact that different ensembles of wavefunctions (mathematically represented by
probability distributions µ over the unit sphere S(H ) of Hilbert space) can have the same
density matrix ρ̂, given by

ρ̂ =
∫

S(H )

|ψ〉〈ψ |µ(dψ). (1)

For example, an ensemble of spin- 1
2 particles consisting of 50% spin-up particles and 50%

spin-down has the same density matrix

ρ̂ =
(

1
2 0

0 1
2

)
(2)

as the ensemble of 50% spin-left and 50% spin-right, or as the ensemble with the spin
direction uniformly distributed over all directions. Since the statistics of any quantum
experiment depends only on the density matrix, these different ensembles are empirically
indistinguishable. Nonetheless, they are physically different, since I may have prepared the
spin state of every single member of the ensemble, so that I know the state vector of every
particle. I can even prove that I know the state vector, and that nature remembers it, by
naming, for every member of the ensemble, a direction and predicting with certainty the result
of a Stern–Gerlach experiment for the spin component in this direction. Therefore, there is a
matter of fact about whether the ensemble is an up–down ensemble or a left–right ensemble;
but if I do not tell you, you have no way of determining which it is. It is a variant of this
argument to say that one cannot measure the wavefunction of an electron, even though there
is, at least in some cases, a matter of fact about what its wavefunction is.

Once it is recognized that the position that I called exaggerated positivism is wrong, one
realizes how eccentric it always was. It entails that every question can be answered by a
suitable experiment, and that seems clearly wrong. Consider, for example, the question, ‘who
was Jack the Ripper’? (This name was given to the unknown person who committed a series
of brutal murders in London in the 1880s.) There must have been one or more persons who
were guilty of these crimes, and several plausible suspects have been investigated, but as yet
none could be proven guilty beyond reasonable doubt [62], and it seems quite possible that
none ever will. So, questions need not be meaningless just because there is no systematic way
of answering them. In the words of Bell [7]: ‘to admit things not visible to the gross creatures
that we are is, in my opinion, to show a decent humility, and not just a lamentable addiction
to metaphysics’.

I want to mention another example against exaggerated positivism. The interior of a black
hole is shielded from us by an event horizon, and since there is no way for us to learn about
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events inside the black hole, exaggerated positivism would imply that these events are not real.
That sounds implausible. (It may sound even less plausible for de Sitter spacetime [47], where
large portions of spacetime are shielded from each other by event horizons. There might be
observers in both regions, and none of them has more right than the other to be regarded as
‘outside’.) You may object that the events inside a black hole are in principle observable, since
if I get overwhelmed by curiosity I can cross the black hole’s horizon, and then the desired
information is accessible to me. But this is not quite true since there is a spacetime region
which remains inaccessible to me even if I enter the black hole because its future is disjoint
from that of here-now.

Moreover, there are subtleties about what it means for a quantity to be observable, which
are not easily appreciated if one is making axioms about observations, but become evident
from the viewpoint of a quantum theory without observers. Let me illustrate them using again
the example of the velocity in Bohmian mechanics:

• If I know the wavefunction of a particle then I can measure its velocity, but the experiment
for this may change the particle’s wavefunction completely.

• If I know that the particle was, some time �t ago, within the radius ε of the location
x ∈ R3, then I can measure the average velocity v over the time span �t by measuring
the particle’s present position x ′ ∈ R3 with inaccuracy ε′ and computing v = (x ′ −x)/�t

with inaccuracy � (ε + ε′)/�t . However, the velocity after the detection may be quite
different from v, which was the average velocity before.

• As a consequence of the possibility of measuring average velocities, I can measure
asymptotic velocities as long-term averages with arbitrarily high precision. Indeed, what
is usually called a ‘momentum measurement’ in quantum mechanics actually measures,
in Bohmian mechanics, (mass times) the asymptotic velocity in the absence of forces, but
not (mass times) the instantaneous velocity.

This gives you an idea that the situation is more complex than conveyed by the statement,
‘velocities cannot be measured in Bohmian mechanics’.

Then what is the relevant difference between Bohmian velocities on the one hand and
angels and the ether on the other that makes one scientific and the other two not, if they all are
empirically inaccessible? The relevant difference to angels is that there is no empirical reason
to hypothesize the existence of angels in the first place, whereas there are excellent reasons to
hypothesize the existence of particle trajectories (and therefore velocities), from the existence
of atoms to cloud chamber tracks and spots on photo plates. (In this regard one should also
note that the fact that velocities cannot be measured does not have the status of an additional
postulate of Bohmian mechanics, but is a consequence of the defining equations of the theory,
equations that require no fine tuning to entail this consequence.) The relevant difference to the
ether is as follows. If a theory claims the existence of some object X in addition to matter, and
if it turns out that X has no influence on the behaviour of matter, then one obtains a simpler
theory by denying the existence of X and keeping the same laws for matter. Such was the case
with the ether. The key argument against the existence of the ether (or an absolute frame of
reference) was not that Michelson and Morley could not observe it, but that Einstein could
show how to obtain a theory that does not need the ether, by postulating a four-dimensional
reality (in spacetime) instead of a three-dimensional reality (in space) evolving with time. But
such is not the case with the Bohmian velocities. If every particle has an actual position at
every time, it necessarily has a velocity, so there is no way of keeping the positions without
the velocities. And since, in Bohmian mechanics, matter consists of the particles, removing
the particles from the theory would remove the matter. Thus, the velocities do not form a
superfluous superstructure like the ether.
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1.3. The Truman show

I turn to another reason that I think keeps many physicists from taking Bohmian mechanics
seriously. They feel that a Bohmian universe, though it looks like a quantum universe, is not
the real thing. ‘Bohm is cheating in the sense that the outcome of a quantum measurement
of a typical observable A is not what could be regarded as the true value of A, but rather just
a random number with the right probability distribution, the one prescribed by the quantum
formalism. Thus,’ they conclude, ‘the Bohmian world is a big fake like ‘The Truman Show’—
remember the movie with Jim Carrey1?—except that it is perfect. It is best regarded,’ they feel,
‘as something like a simulation of quantum mechanics, and the fact that there is no experiment
that could distinguish Bohmian mechanics from quantum mechanics is no more relevant than
the fact that you have no possibility to check experimentally whether you are a brain in a vat
(fed by evil scientists with false sense data).’

Indeed, the result of, e.g., a Stern–Gerlach experiment in Bohmian mechanics cannot be
regarded as the true value of the appropriate spin observable, but only as a random number
with the right distribution. The same can be said of most experiments, the only exceptions
being particle detectors, which do reveal the actual position of the Bohmian particle, and many
experiments designed for measuring momentum, which do reveal (mass times) the asymptotic
Bohmian velocity.

But why, in the first place, should we believe in the idea that the result of a Stern–Gerlach
experiment is ‘the true value’ of the appropriate spin observable? Was this idea not already
discredited by the ‘two-valuedness’ of the result (i.e., by the fact that, for a spin- 1

2 particle,
only the two results ±h̄/2 are possible), in contradiction to the picture in which the result is
a component of the (random) angular momentum vector? Was this idea, or more generally
the one that quantum measurements merely reveal pre-existing values of the observables, not
refuted in 1967 by the Kochen–Specker proof [54] (and even earlier by Bell [4] and Gleason
[39])? And was it not emphasized by orthodox quantum philosophy itself since the early
days of quantum mechanics that the result is created, rather than revealed, by the experiment?
But then how could anybody ever expect quantum observables to have ‘true values’? And
how could anybody take seriously the objection that Bohmian mechanics is fake quantum
mechanics? That is the real mystery.

To make a remark of a more sociological nature, I think it is the case that the orthodox
view has a contradictory attitude towards the idea of ‘true values’, often (and misleadingly)
called ‘hidden variables’. The typical orthodox physicist openly condemns hidden variables
as impossible, but in his heart cannot abandon them, and continues to talk as if particles
had energies and angular momentum vectors. Ironically, Bohmian mechanics is often called
a ‘hidden-variables theory’ (also by Bohm himself [13]) because it can be regarded, though
somewhat inappropriately [76], as postulating actual values for the position observable; but for
all other observables, Bohmian mechanics does not claim the existence of hidden variables.
Thus, in this sense, Bohmian mechanics is more of a ‘no-hidden-variables theory’. The
orthodox view seems much more obsessed with hidden variables than the Bohmian one, as it
calls experiments ‘measurements’ and operators ‘observables’, and as it regards the operator
observables as having roughly the same status as their namesakes energy, momentum, etc, in
classical mechanics. In total, one easily tends to take operators too seriously, an attitude called
‘naive realism about operators’ by Daumer et al [20, 32].

1 The Truman Show. Movie (USA, 1998) directed by Peter Weir, written by Andrew Niccol, starring Jim Carrey,
Laura Linney, and others, nominated for 3 Oscars.
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1.4. It is matter that matters

A trait that distinguishes both Bohmian mechanics and the GRW theory from most other
proposals about quantum reality is that they provide variables that represent the matter, more
precisely that describe the distribution of matter in space and time. Such variables were called
the ‘primitive ontology’ by Dürr et al [2, 31, 32] and the ‘local beables’ by Bell [8]. The
simplest example of such variables are the (positions of the) particles in Bohmian mechanics.
The GRW theory is known in two versions with different primitive ontologies, see section 2.2.

The attitude behind postulating such variables is to be contrasted with the attitude
according to which the wavefunction describes the state of the matter. The ‘description’
provided by the wavefunction is, however, in such a vague sense that almost any two physicists
disagree about what exactly the reality is like when the wavefunction is such and such. Note
how different the sense is in which the ‘primitive ontology’ provides a description of matter.
If a theory postulates that matter consists of point particles, and provides the positions of these
particles at all times, then it provides a picture that could not be sharper. It may be wrong, but
there is nothing vague about it. But first of all, the primitive ontology makes explicit what the
reality is, rather than leaving it to everybody’s private fantasies. This is a crucial merit of the
unromantic pictures.

2. Three theories: Bohm, collapse, and again collapse

2.1. Bohmian mechanics

Bohmian mechanics is a theory of (non-relativistic) particles in motion. The motion of a
system of N particles is provided by their world lines t �→ Qi(t), i = 1, . . . , N , where Qi(t)

denotes the position in R3 of the ith particle at time t. These world lines are determined by
Bohm’s law of motion [4, 11, 13, 31],

dQi

dt
= v

ψ

i (Q1, . . . ,QN) = h̄

mi

Im
ψ∗∇iψ

ψ∗ψ
(Q1, . . . , QN), (3)

where mi, i = 1, . . . , N , are the masses of the particles; the wavefunction ψ evolves according
to Schrödinger’s equation

ih̄
∂ψ

∂t
= Hψ, (4)

where H is the usual nonrelativistic Schrödinger Hamiltonian; for spinless particles it is of the
form

H = −
N∑

k=1

h̄2

2mk

∇2
k + V, (5)

containing as parameters the masses of the particles as well as the potential energy function
V of the system.

As a consequence of Schrödinger’s equation and of Bohm’s law of motion, the quantum
equilibrium distribution |ψ(q)|2 is equivariant. This means that if the configuration
Q(t) = (Q1(t), . . . ,QN(t)) of a system is random with distribution |ψt |2 at some time t,
then this will be also true for any other time t. Thus, the quantum equilibrium hypothesis,
which asserts that whenever a system has wavefunction ψt , its configuration Q(t) is random
with distribution

ρ = |ψt |2, (6)
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can consistently be assumed. This hypothesis is not as hypothetical as its name may suggest: it
follows, in fact, by the law of large numbers from the assumption that the (initial) configuration
of the universe is typical (i.e., not too special) for the |�|2 distribution, with � the (initial)
wavefunction of the universe [31]. The situation resembles the way Maxwell’s distribution
for velocities in a classical gas follows from the assumption that the phase point of the gas
be typical for the microcanonical distribution on the energy surface. As a consequence of the
quantum equilibrium hypothesis, a Bohmian universe, even if deterministic, appears random
to its inhabitants. For a discussion see [31, 32].

2.2. Ghirardi, Rimini and Weber

Ghirardi, Rimini and Weber (GRW) [37] have proposed a nonlinear, stochastic evolution law
for quantum mechanical wavefunctions that deviates from the unitary Schrödinger evolution
by implementing spontaneous collapses of the wavefunction. Two primitive ontologies have
been proposed for use with the GRW wavefunction: a matter density ontology [10] and a flash
ontology [7], leading to two collapse theories denoted by GRWm and GRWf.

To begin with, the GRW wavefunction follows a stochastic jump process in the Hilbert
space. Consider a quantum system of (what would normally be called) N ‘particles’, described
by a wavefunction ψ = ψ(q1, . . . , qN), qi ∈ R3, i = 1, . . . , N . For any point x in R3, define
on the Hilbert space of the system the collapse rate operator

�i(x) = 1

(2πσ 2)3/2
e− (Q̂i−x)2

2σ2 , (7)

where Q̂i is the position operator of ‘particle’ i. Here σ is a new constant of nature of order
of 10−7 m.

Let ψt0 be the initial wavefunction, i.e., the normalized wavefunction at some time t0
arbitrarily chosen as initial time. Then ψ evolves in the following way.

(i) It evolves unitarily, according to Schrödinger’s equation, until a random time T1 =
t0 + �T1, so that

ψT1 = U�T1ψt0 , (8)

where Ut is the unitary operator Ut = e− i
h̄
H t corresponding to the standard Hamiltonian H

governing the system, e.g., given by (5) for N spinless particles, and �T1 is a random time
distributed according to the exponential distribution with rate Nλ (where the quantity λ

is another constant of nature of the theory2, of order of 10−15 s−1).
(ii) At time T1, it undergoes an instantaneous collapse with random centre X1 and random

label I1 according to

ψT1 �→ ψT1+ = �I1(X1)
1/2ψT1

‖�I1(X1)1/2ψT1‖
. (9)

I1 is chosen at random in the set {1, . . . , N} with uniform distribution. The centre of the
collapse X1 is chosen randomly with probability distribution

P(X1 ∈ dx1|ψT1 , I1 = i1) = 〈ψT1 |�i1(x1)ψT1〉 dx1 = ‖�i1(x1)
1/2ψT1‖2 dx1. (10)

(iii) Then the algorithm is iterated: ψT1+ evolves unitarily until a random time T2 = T1 + �T2,
where �T2 is a random time (independent of �T1) distributed according to the exponential
distribution with rate Nλ, and so on.

2 Pearle and Squires [60] have argued that λ should be chosen differently for every ‘particle’, with λi proportional
to the mass mi .
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In other words, the evolution of the wavefunction is the Schrödinger evolution interrupted
by collapses. When the wavefunction is ψ , a collapse with centre x and label i occurs at rate

r(x, i|ψ) = λ 〈ψ |�i(x)ψ〉 (11)

and when this happens, the wavefunction changes to �i(x)1/2ψ/‖�i(x)1/2ψ‖.
In the subsections below I describe GRWm and GRWf, two theories that share the GRW

wavefunction but differ in their postulate about matter. They introduce different kinds of
primitive ontology.

2.2.1. GRWm. GRWm [2, 3, 10, 74] postulates that there is a continuous distribution of
matter in space whose density at location x ∈ R3 and time t ∈ R is given by

m(x, t) =
N∑

i=1

mi

∫
R3N

dq1 · · · dqNδ(qi − x)|ψ(q1, . . . , qN , t)|2. (12)

In words, one starts with the |ψ |2 distribution in configuration space R3N , then obtains the
marginal distribution of the ith degree of freedom qi ∈ R3 by integrating out all other variables
qj , j 
= i, multiplies by the mass associated with qi , and sums over i. For further discussion
of this ontology see [2].

2.2.2. GRWf. GRWf was first suggested by Bell [7, 9], and then adopted in [2, 51, 57,
73, 74], for the purpose of obtaining a relativistic collapse theory. According to GRWf, the
primitive ontology is given by ‘events’ in spacetime called flashes, mathematically described
by points in spacetime. In GRWf, matter is neither made of particles following world lines,
such as in classical or Bohmian mechanics, nor of a continuous distribution of matter such
as in GRWm, but rather of discrete points in spacetime, in fact finitely many points in every
bounded spacetime region. ‘A piece of matter then is a galaxy of such events’ [7].

In the GRWf theory, the spacetime locations of the flashes can be read off from the
history of the wavefunction: every flash corresponds to one of the spontaneous collapses of
the wavefunction, and its spacetime location is just the spacetime location of that collapse.
The flashes form the set

F = {(X1, T1), . . . , (Xk, Tk), . . .}
(with T1 < T2 < . . .).

Note that if the number N of the degrees of freedom in the wavefunction is large, as
in the case of a macroscopic object, the number of flashes is also large (if λ = 10−15 s−1

and N = 1023, we obtain 108 flashes per second). Therefore, for a reasonable choice of
the parameters of the GRWf theory, a cubic centimetre of solid matter contains more than
108 flashes per second. That is to say that large numbers of flashes can form macroscopic
shapes, such as tables and chairs. That is how we find an image of our world in GRWf.
According to GRWf, the wavefunction serves as the tool to generate the ‘law of evolution’ for
the flashes: equation (11) gives the rate of the flash process—the probability per unit time of
the flash of label i occurring at the point x. Since the wavefunction ψ evolves in a random
way, F = {(Xk, Tk) : k ∈ N} is a random subset of spacetime, a point process in spacetime.

Note that GRWm and GRWf, though they share the same wavefunction and are empirically
equivalent, are clearly different theories. For example, one of them says that matter is
continuously distributed, and the other that matter is concentrated in countably many spacetime
points. As a less trivial example, GRWf allows strong superselection rules, as does Bohmian
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mechanics, but GRWm does not [19]. As another example, in GRWf but not in GRWm the
probability distribution of the history of the primitive ontology is quadratic in ψ [2]3.

3. Recent developments

Now that the days in which quantum mechanics was mysterious are over, new challenges
arise from relativity, from quantum field theory (QFT), from the combination of the two, and,
finally, from quantum gravity. In this section, I report about some recent progress concerning
the problems how to extend Bohmian mechanics and the GRW theories to quantum field
theory and how to make them relativistic. I first turn to the quantum field theory and then to
the relativity question.

3.1. Bohmian mechanics and quantum field theory

Two ways of extending Bohmian mechanics to quantum field theory are known: either by
postulating that a field configuration (instead of a particle configuration) is guided by a
wavefunction (understood as a functional on the field configuration space) [13, 15], or by
introducing particle creation and annihilation into Bohmian mechanics [5, 26, 29]. The latter
approach is called ‘Bell-type quantum field theory’ since the first model of this kind (on a
lattice) was proposed by Bell [5].

3.1.1. Field ontology. Although the field ontology was proposed already in the 1950s [13]
and taken up by several authors [15, 48, 49, 67, 68, 77], it has not been sufficiently developed
to clarify whether it provides a viable theory. There exist no rigorous studies of this approach,
and in particular the obvious question how to obtain an equivariant measure, the analogue
of |ψ(q)|2dq, on an infinite-dimensional configuration space where no Lebesgue volume
measure exists, has not been addressed. (This question is not of the same importance in
orthodox quantum field theory, as normal experiments concern the detection of particles rather
than the measurement of the field at all points of space.)

Another question that needs to be addressed is whether what we normally regard as
different macrostates is actually supported by disjoint field configurations. This property is
not obvious if the primitive ontology is not directly related to (what can be regarded as) the
distribution of matter in space (for example, for an ontology of electromagnetic fields [68]).
And this property is relevant for ensuring that measurement results get displayed and recorded
in the primitive ontology.

3.1.2. Bell-type quantum field theories. In Bell-type QFTs, the motion of the configuration
along deterministic trajectories is interrupted by stochastic jumps, usually corresponding to
the creation or annihilation of particles. A typical example of a configuration space in this
context is the configuration space Q = �(R3) of a variable number of identical particles,

3 This fact has an interesting consequence. Some physicists feel that whenever two ensembles of systems have the
same density matrix, they are physically equivalent, a view I criticized in section 1.2. However, for the different
claim that two ensembles of initial wavefunctions of universes (as opposed to ensembles of subsystems within one
universe) are physically equivalent if they have an equal density matrix, the situation is different indeed. The criticism
of section 1.2 does not apply, and, while the claim is wrong for GRWm and Bohmian mechanics, it could be defended
for GRWf, as two ensembles of wavefunctions with the same density matrix have the same distribution of the history
of the primitive ontology.
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which can be defined as the set of all finite subsets of 3-space, or, equivalently, as the (disjoint)
union of all N-particle configuration spaces:

NR3 := {q ⊂ R3 : #q = N} = (R3N\{coincidences})/permutations. (13)

A history of particles in R3 that can be created, move, and be annihilated corresponds to a
path t �→ Qt in Q that jumps, at every time of creation or annihilation, from one sector NR3

to another.
In a Bell-type QFT, the configuration Qt follows a Markov jump process in Q. This

means, in every time interval [t, t + dt] the configuration Qt has probability

σt (Qt → q) dt dq (14)

to jump to the volume dq around the configuration q, and in case it does not jump it moves
continuously according to Bohm’s law of motion:

dQt

dt
= vψt (Qt). (15)

The jump rate σ(q ′ → q) dq (probability per time) is prescribed by the following law in terms
of the wavefunction ψ , which is usually from the Fock space:

σψ(q ′ → q) = 2

h̄

[Im〈ψ |q〉〈q|HI |q ′〉〈q ′|ψ〉]+

〈ψ |q ′〉〈q ′|ψ〉 , (16)

where HI is the interaction Hamiltonian and s+ = max(s, 0) denotes the ‘positive part’ of
s ∈ R.

This law is dictated by the following considerations. We want the measure |ψ(q)|2 dq to
be equivariant, i.e., we want that Qt has distribution |ψt |2 provided Q0 had distribution |ψ0|2.
Moreover, in rough analogy to the formula

j = h̄

m
Im(ψ∗∇ψ), (17)

for the probability current in quantum mechanics there is a formula

J (q, q ′) = 2

h̄
Im〈ψ |q〉〈q|HI |q ′〉〈q ′|ψ〉 (18)

for the probability current between q and q ′ due to HI , and we want J (q, q ′) dq dq ′ to be the
amount of probability flowing (per time) from dq ′ to dq minus the amount from dq to dq ′.
Among all jump rates σ with this property, (16) is the smallest, leading to no more jumps than
necessary for ensuring the prescribed net flow of probability. This is the reason why the jump
process with rate (16) is called the minimal process associated with ψ and HI .

It has been made plausible [29] that this concept extends to a natural way of associating,
with every Hamiltonian H (from a large class of operators) and every initial wavefunction ψ

(from a dense subspace) evolving according to H, a Markov process in configuration space,
the minimal process. More precisely, it is the triple

(Hilbert space, Hamiltonian, position operators) (19)

that defines, for every ψ , a process Qψ . The ‘position operators’ are given as a positive-
operator-valued measure (POVM) on configuration space. Thus, whenever a QFT is given
as such a triple, there is a Bohm-like process in Q associated with it in a canonical way. Of
course, this scheme does not provide particle paths for QFTs with ill-defined Hamiltonians.
Here are some examples of minimal processes:

• The minimal process associated with the Schrödinger operator (5) is Bohmian mechanics.
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• The one associated with the Dirac operator

H = −ich̄α · ∇ + mc2β (20)

is Bohm’s 1953 [14] law of motion for a Dirac particle,

dQ

dt
= ψ †αψ

ψ †ψ
(Q) or

dXµ

dτ
∝ jµ(X(τ)), jµ = ψγ µψ, (21)

where Q(t) ∈ R3 is the position of the particle at time t, Xµ = (t,Q(t)) is the
corresponding spacetime point and τ is an arbitrary curve parameter (e.g., proper time).

• The minimal process associated with integral operators H = HI is the pure jump process
with rates (16).

• The one associated with H = H0 + HI , the sum of a Schrödinger or Dirac operator H0

and an integral operator HI , is Bohmian motion interrupted by stochastic jumps.
• For quantum mechanics on a graph, a candidate process is known [72].

Here is a look at the literature. The jump rate (16) was first considered by Bell [5] on
the lattice and in [25] in the continuum, and further discussed in [17, 18, 21, 26, 28, 29, 33,
34, 69, 78]. Some mathematical works study the following aspects: conditions under which
the jump rate is rigorously defined [28], conditions for the global existence of Bell’s lattice
process [33], conditions for the global existence of the trajectories in the absence of jumps
[70]; a global existence proof for the combination of continuous motion and jumps is still
missing but seems doable. It has been conjectured [29, 69, 78] (but not rigorously proven) that
Bell’s process for the lattice approximation to the Schrödinger equation converges to Bohmian
mechanics as the lattice width goes to zero. It has been observed in [19] that in Bell-type QFTs,
superselection rules sometimes hold in the strong sense that every superposition (relative to
the superselected observable) can be replaced by a mixture without changing the probability
distribution on path space, as opposed to the weak sense of superselection in which every
superposition can be replaced by a mixture without an empirically detectable difference. For
a proposal how to make Bell’s lattice process deterministic by introducing further variables
see [50].

3.1.3. Position operators. For the choice of configuration space and the position operators,
there is often an obvious candidate. When we deal with several species of particles, we may
take the configuration space Q to be the Cartesian product of several copies of �(R3), and the
position POVM to be the corresponding product [29]. For the quantized Dirac field, an obvious
candidate, used by Dürr et al [29], would be Q = �(R3) × �(R3), so that a configuration
specifies some electron points and some positron points, with the position POVM determined
on each factor by the electron (positron) number operators on the appropriate Fock spaces,
often denoted by b†(r)b(r) and d†(r)d(r) with r ∈ R3.

A different proposal for the quantized Dirac field, corresponding primarily to a different
choice of position operators, has been made by Bohm and Hiley [15, p 276] and, more recently
and in more detail, by Colin [17, 18], so I will call it ‘Colin’s picture’ in the following. He
proposes to take the ‘Dirac sea’ literally and to introduce infinitely many particles, each
having a trajectory, obeying the analogue of (21) with a wavefunction of infinitely many
particles. (This wavefunction should be ‘the filled Dirac sea’ with finitely many electrons
removed from the negative energy states and/or added with positive energy states.) This
kind of Bohmian dynamics for infinitely many particles has been defined only heuristically,
without mathematical rigor; since the configuration space becomes infinite dimensional and
such spaces do not possess a Lebesgue volume measure, it remains unclear whether and how
an equivariant measure, the analogue of |ψ(q)|2 dq, can be defined. Since in Colin’s picture,
every little volume of space contains infinitely many particles, it is not obvious how to read
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off pointer positions, or, more generally, how to obtain from it a familiar picture of matter, in
which (say) tables and chairs are discernible. To this end, Colin [18] has proposed a certain
way of coarse graining the density of matter, and has argued heuristically that for a typical
configuration of a state consisting of the filled Dirac sea with one electron added, the coarse-
grained density has a discernible peak over the ‘sea level’, a peak of height 1 and width the
Compton wave length.

Three differences between Colin’s picture (C) and that of Dürr et al (D) can be mentioned.
First, C is deterministic and D is stochastic. Second, a drop of water in D consists of about 1024

particles, which agrees with what one would naively expect before worrying about quantum
field theory. In C, it consists of infinitely many particles belonging to the Dirac sea, as does the
same volume of vacuum. This trait of C is not inacceptable but a bit eccentric. Third, in usual
quantum field theory there is a symmetry between electrons and positrons, in the sense that
one could just as well regard the electron as the anti-particle of the positron. This symmetry
is respected in D and broken in C, in which electrons are real but positrons are merely holes.

Let me turn to another aspect of the choice of the position POVM. Goldstein et al [42] have
elaborated on the possibility first considered by Bell [5] that ‘particles are just points’, which
means that the primitive ontology does not include intrinsic differences between particles of
different species, and entails that, even for particles of different species, the configuration
space is that of identical particles, �(R3). This can always be arranged by suitably projecting
the position POVM to �(R3). Alternatively, this POVM arises in a canonical way from the
particle number operators N(r) [29, section 6.8].

Despite the differences between the various pictures, including the field ontology, it is
striking that they have in common: (i) the attitude about what a theory has to achieve for being
acceptably clear, (ii) the structure of matter being described by beables and guided (if only
stochastically) by the wavefunction, (iii) the status of the observables as being secondary to
the beables and (iv) the unitary evolution of the wavefunction.

3.2. GRW and quantum field theory

Since there are no particles in the GRW theories, configuration space plays not the same role as
in Bohmian mechanics, and a POVM on configuration space is not the relevant mathematical
object. Instead, for the purposes of GRW theories, a QFT can be thought of as given by the
triple

(Hilbert space, Hamiltonian, matter density operators M(r)). (22)

For the matter density one could take either the particle number density operators M(r) =
N(r), such as M(r) = b†(r)b(r) + d†(r)d(r) for the quantized Dirac field, or (preferably, say
[3, 60]) the mass density operators. Then the collapse rate operators �(r) are obtained by
convolution with a Gaussian of width σ :

�(r) =
∫

d3r ′M(r ′)
1

(2πσ 2)3/2
e− (r−r′)2

2σ2 . (23)

Given these operators, there is a canonical GRW-like collapse process with collapse rate (11)
[74, 75], and a canonical CSL process [36] (continuous spontaneous collapse; see [3] for a
review). The GRW-like process can be combined with either the flash ontology or the matter
density ontology, the CSL process with the matter density ontology.

3.3. Bohmian mechanics and relativity

3.3.1. The time foliation. With the invocation of a preferred foliation F of spacetime into
spacelike 3-surfaces, given by a Lorentz invariant law, it is known [24] that Bohmian mechanics
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possesses a natural generalization to relativistic spacetime. I will call this foliation the time
foliation in the following, to distinguish it from all the other foliations that a Lorentzian
manifold possesses, and the 3-surfaces belonging to F the time leaves. The role of the
time foliation is to define which configurations of N spacetime points should be counted as
‘simultaneous’ when plugging the ‘simultaneous’ positions of all particles into (the analogue
of) Bohm’s equation of motion. The possibility of a preferred foliation seems against the spirit
of relativity (see [56] for a discussion), but certainly worth exploring. It is suggested by the
empirical fact of quantum non-locality and by the structure of the Bohmian law of motion (3)
for many particles, in which the velocity of a particle depends on the simultaneous positions of
the other particles. The GRW theory differs from Bohmian mechanics in that it can be made
relativistic without the invocation of a time foliation (see section 3.4 below).

Using a time foliation, a Bohm-type equation of motion was formulated by Dürr et al
[24] for flat spacetime (based on earlier work in [15, 30]; for a lattice version see [64]; for a
version with a field ontology see [49]; the straightforward generalization to curved spacetime
was formulated and mathematically studied in [71]):

dX
µk

k

dτ
∝ jµ1...µN (X1(�), . . . , XN(�))

∏
i 
=k

nµi
(Xi(�)), (24)

where Xk(τ) is the world line of particle k ∈ {1, . . . , N}, τ is any curve parameter, � is the
time leaf containing Xk(τ), n(x) is the unit normal vector on � at x ∈ �,Xi(�) is the point
where the world line of particle i crosses �, and

jµ1...µN = ψ(γ µ1 ⊗ · · · ⊗ γ µN )ψ (25)

is the probability current associated with the Dirac wavefunction ψ defined on
⋃

�∈F �N .
As mentioned before, the time foliation might itself be dynamical. It is to be regarded

as a physical object, just as the spacetime metric or the wavefunction, and as such should be
governed by an evolution law. An example of a possible Lorentz invariant evolution law for
the foliation is

∇µnν − ∇νnµ = 0. (26)

This law allows us to choose an initial spacelike 3-surface and then determines the foliation. It
is equivalent to saying that the infinitesimal timelike distance between two nearby 3-surfaces
from the foliation is constant along the 3-surface. As a consequence, there is a system of
spacetime coordinates x0, . . . , x3 such that x0 is constant on every time leaf, and

gµν =
(

1 0
0 gij

)
(27)

with −gij a Riemannian 3-metric.
A special foliation FBB obeying (26) is the one consisting of the surfaces of constant

timelike distance from the big bang (i.e., the initial singularity). It is the foliation defined by
the function that could be regarded as the only natural concept of ‘absolute time’ available in a
Lorentzian manifold with big bang; for example, the ‘absolute time’ of here-now is 13.7±0.2
billion years [66].

Actually, the law of motion (24) does not require any particular choice of law for the
foliation, except that the foliation does not depend on the particle configuration (while it may
depend on the wavefunction).

3.3.2. Other proposals for relativistic Bohmian mechanics. Since the existence of a time
foliation would be against the spirit of relativity, several attempts have been undertaken at
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obtaining a relativistic Bohm-like theory without a time foliation. I briefly describe four
such proposals in this subsection, items (i)–(iv) below. However, (i)–(iii) are not satisfactory
theories, and (i) and (iv) both involve some foliation-like structure, something just as much
against the spirit of relativity as a time foliation.

First, we need the concept of a multi-time wavefunction ψ(q1, t1, . . . , qN , tN ), which is
the obvious generalization of an N-particle wavefunction ψ(q1, . . . , qN , t) to the relativistic
setting. It involves one time variable for every particle and thus constitutes a function on
(spacetime)N . For N time variables one needs N Schrödinger equations

ih̄
∂ψ

∂tk
= Hkψ, (28)

and such a set of equations cannot always consistently be solved4. The condition for
consistency reads[

ih̄∂

∂tk
− Hk,

ih̄∂

∂tj
− Hj

]
= 0 for k 
= j. (29)

In quantum mechanics, this condition is satisfied for non-interacting particles but not in
the presence of an interaction potential. It seems that consistent multi-time equations with
interaction are possible if the interaction is implemented, not by a potential, but by creation
and annihilation of other particles.

In the remainder of this section, I consider only non-interacting particles, and the
corresponding unitary evolution is given by N Dirac equations:

ih̄γ
µ

k

∂ψ

∂x
µ

k

= mkψ, (30)

where mk is the mass of the kth particle, and γ
µ

k is the Dirac gamma matrix γ µ acting on the
spin index of the kth particle. Now, I turn to the four proposed relativistic modifications of
Bohmian mechanics.

(i) Synchronized trajectories [12, 22, 58]. Define a path s �→ X(s) in (spacetime)N as
the integral curve of a vector field jψ on (spacetime)N , with jψ a suitably defined
current vector field obtained from a wavefunction ψ on (spacetime)N . The path
X(s) = (X1(s), . . . , XN(s)) defines N paths in spacetime, parametrized by a joint
parameter s, which are supposed to be the particle world lines. This approach is based
on a naive replacement of space with spacetime. Apparently, it does not possess any
equivariant measure, and thus does not predict any probabilities. Moreover, it does
introduce a foliation-like structure: The joint parametrization defines a synchronization
between different world lines, as it defines which point on one world line is simultaneous
to a given (spacelike separated) point on a second world line. Indeed, the synchronization
is encoded in the world lines since, if N non-synchronous points X1(s1), . . . , XN(sN)

on the N world lines are chosen, then the integral curve s �→ Y (s) of jψ starting from
Y (0) = (

X1(s1), . . . , XN(sN)
)

will generically lead to different world lines than X.
(ii) Light cones as simultaneity surfaces [45]. Using as surfaces of simultaneity the future or

past light cones, one can specify a Bohm-like equation of motion for N particles without
a time foliation or similar structure. If using past light cones, the theory is local, but
if using future light cones it is nonlocal, thus providing a toy example of a relativistic

4 To understand why, consider for simplicity N = 2, suppose you specify initial data for t1 = t2 = 0 and think of
the multi-time wavefunction as a Hilbert-space-valued function of (t1, t2), with the Hilbert space L2(q1, q2). Then
note that, in order for such a function of (t1, t2) to exist, evolving the vector in the Hilbert space from time (0, 0) to
(say) (t, 0) and then from (t, 0) to (t, t) must lead to the same result as first evolving from (0, 0) to (0, t) and then
from (0, t) to (t, t).
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nonlocal theory. Since its equation of motion is a sort of differential delay equation with
advanced arguments, it possesses a microscopic arrow of time pointing towards the past,
i.e., opposite to the macroscopic (thermodynamic) arrow of time. Apparently, this theory
does not possess any equivariant measure, and thus does not predict any probabilities.

(iii) Covariant velocity vector fields [44, 46]. Consider N particles, with positions
(Q1(t), . . . ,QN(t)) =: Q(t), moving according to the equation of motion dQ/dt =
v(Q), with v a vector field on R3N . Suppose v has the property that every integral
curve t �→ Q(t), when understood as N curves in spacetime, will transform under any
Poincaré transformation into another integral curve of v. Then the theory is covariant,
without invoking a time foliation or similar structure. I can show that such ‘covariant’
vector fields v exist for every N � 3, and that the resulting particle theory is nonlocal.
In such a theory, any Lorentz frame could equally be regarded as providing the surfaces
of simultaneity used in the law of motion. However, it is not clear how to obtain
any probabilities from such theories, as they do not provide a measure on the space of
solution curves t �→ Q(t). In addition, they have a kind of conspiratorial character, as
a consequence of which they are very incompatible with free will, more so than other
deterministic or stochastic theories. (For example, the theoretical treatment of a system of
nonrelativistic Bohmian particles allows external potentials to be treated as free variables,
at the whim of the experimenter, as long as the experimenter herself is not included in the
deterministic treatment.)

(iv) Flashes with the Schrödinger evolution. This model, described in [2] for a different
purpose in a nonrelativistic setting under the name Sf ′, uses the flash ontology, but
(unlike GRWf) is empirically equivalent to orthodox quantum mechanics. Consider a
relativistic system of N noninteracting quantum particles with multi-time wavefunction
governed by N Dirac equations (30). Each of the flashes is associated with one of the
particle labels 1, . . . , N , and one ‘seed flash’ Xk of every label must be specified as a
part of the initial data, together with a (timelike, future-pointing) unit vector u

µ

k from
the tangent space at Xk . Then one can devise a covariant algorithm for constructing the
subsequent random flashes, each with a unit tangent vector, by plugging the previous
flashes into the other variables of the wavefunction5. This theory arguably reproduces the
quantum mechanical probabilities, or at least it would if interaction were incorporated. A
trait of this theory that is absent from relativistic GRWf is that the flashes are endowed
with a temporal ordering, defining which of two flashes at spacelike distance is earlier
and which is later. This is because the flashes are constructed here in generations, and
the distribution of a flash depends upon which of the other flashes belong to the same or
the previous generation. Thus, this theory also contains some foliation-like structure, but
at least it works better than the theory with synchronized trajectories, as it yields the right
probabilities.

5 Here is how. Choose a random value T1 with exponential distribution with expectation 1/λ and a random spacetime
point X̃1, the next flash with label 1, on the 3-surface �1 of a constant timelike distance T1 from X1 with probability
distribution

P(X̃1 ∈ d3x1) = N1j
µ1...µN (x1, X2, . . . , XN)n1,µ1 (x1)u2,µ2 · · ·uN,µN

Vol(d3x1), (31)

where jµ1 ...µN is defined by (25), Vol(d3x1) is the Riemannian 3-volume measure on the surface �1, n1,µ the unit
normal vector field on �1, and N1 a normalizing constant. Set ũ1,µ = n1,µ(X̃1). Repeat the same procedure with
label 2, i.e., choose a random value T2 and a random point X̃2 on the 3-surface �2 of a timelike distance T2 from X2
with distribution

P(X̃2 ∈ d3x2|X̃1, ũ1) = N2j
µ1 ...µN (X̃1, x2, X3, . . . , XN)ũ1,µ1 n2,µ2 (x2)u3,µ3 · · · uN,µN

Vol(d3x2), (32)

and so on. (Alternatively, choose at random which label to proceed with.)
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3.4. GRW and relativity

The GRW theory can be made relativistic, without a time foliation or any similar structure,
when using the flash ontology [73]. This was conjectured first by Bell [7]; for discussions of
the relativistic GRWf model see also [2, 57, 75]. A relativistic collapse model on a lattice has
been described by Dowker and Henson [23].

At present, the relativistic GRWf model is known only for N non-interacting ‘particles’
as it uses multi-time wavefunctions (as discussed in section 3.3.2). The defining equations
of the relativistic GRWf model are spelled out in [73, 75]; here I limit myself to describing
its structure. Each flash has a label or ‘type’ i ∈ {1, . . . , N}. Choose an arbitrary spacelike
3-surface �0 where initial conditions are specified. As the initial conditions, specify a
(normalized Dirac) wavefunction ψ�0 on �N

0 and one ‘seed flash’ of every type in the past of
�0, to be thought of as the last flash of its type before �0. Then the model specifies, by its
defining law, the joint probability distribution of all flashes (and their types) in the future of
�0. This law is independent of the choice of coordinates and does not require or generate a
time foliation or any similar structure.

The foliation independence of the model can be expressed in the following way. With
every spacelike 3-surface � in the future of �0 there is associated a wavefunction ψ� on �N ,
the conditional wavefunction, which depends on all flashes between �0 and �, as well as on
the seed flashes before �0 and, of course, on the initial wavefunction. (Indeed, the conditional
wavefunction collapses at every flash.) Then the conditional probability distribution of all
flashes (and their types) in the future of �, given the flashes between �0 and �, coincides
with the distribution given by the model’s defining law, with the initial 3-surface �0 replaced
by �, ψ�0 replaced by ψ� , and the seed flashes replaced by the last flash of every type
before �.6

For understanding the model it is important to realize that the matter (or primitive ontology)
is given by the flashes, whereas the wavefunction has a different status: that of a physical
object influencing the matter. Suppose � and �′ are two different spacelike 3-surfaces having
a large portion � ∩ �′ in common, then ψ� and ψ�′ can be quite different, due to collapses
at flashes between � and �′. For example, an EPR–Bell pair could be in a singlet state on
� but has collapsed to a product state on �′. In particular, even the reduced density matrices
pertaining to the region � ∩�′ (obtained from ψ� respectively ψ�′ by a partial trace) could be
different, such as, in the example, ( 1

2 times) a two-dimensional respectively a one-dimensional
projection. Had we left the primitive ontology unspecified, or tried to regard the wavefunction
as the primitive ontology, it would have appeared profoundly problematical that the theory does
not associate a unique quantum state with a piece of 3-surface such as � ∩�′. But no problem
arises from this fact in GRWf because the behaviour of matter, constituted by the flashes, is
always unambiguous. For the same reason, no conflict with relativity arises from the fact that
in every coordinate system (x0, . . . , x3) on spacetime, the collapse of ψt = ψ{x0=t} takes place
instantaneously over arbitrary distances, along any level surface {x0 = t} containing a flash.

Observe also that the same wavefunction with a different primitive ontology, the matter
density ontology, would not be relativistic, at least not with a naive application of (12). Thus,
one cannot decide whether a collapse model is relativistic or not until the primitive ontology is
clearly specified. I see this as the main obstacle that previous attempts at defining relativistic
collapse theories encountered.

6 The equation to be used here as the defining law is (33) in [73], or (29) in [75]. One can obtain simpler formulae,
equation (19) in [73] or (21) in [75], for defining the joint distribution of all flashes, if either the seed flashes lie on
�0, or if one dispenses with any initial 3-surface �0 by specifying (in addition to the seed flashes) the pre-collapse
wavefunction not on �0 but on all of (spacetime)N , i.e., by specifying on (spacetime)N what the wavefunction would
have been if no flash after the seed flashes had ever occurred.
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For example, also the CSL approach succeeds (if we leave aside problems with
divergences) in attributing, in a Lorentz invariant way without a time foliation or similar
structure, to every spacelike 3-surface � a collapsed wavefunction ψ� . As with relativistic
GRWf, the reduced states on � ∩ �′ obtained from ψ� and ψ�′ may differ. In addition to the
evolution law for ψ� , Ghirardi [35] has mentioned what he calls a ‘criterion for events’ but
has not made its status completely clear. Should we regard it as a consequence arising from
an analysis of ψ� (as we might in GRWf) or as a postulate introducing a primitive ontology ξ

and a law for ξ (i.e., as an alternative to GRWf)? In any case, the ‘criterion’ asserts that if A

is a local observable associated with spacetime point x and PLC(x) is the past light cone of
x, then A is attributed the value α if

AψPLC(x) = αψPLC(x), (33)

otherwise A is attributed the value ‘indefinite’. (Although PLC(x) is not spacelike, it is a
limit of spacelike 3-surfaces, so we may hope ψPLC(x) is a well-defined object.) In order to
have a clear primitive ontology, we may take ξ to be these ‘values’ for all local observables
A. With this attitude it becomes clear why Ghirardi [35] so strongly rejected criticisms on the
grounds that different spacelike surfaces �,�′ sometimes attribute different reduced states
to � ∩ �′. After all, the criticism refuses to pay attention to a crucial part of the ontology,
namely ξ .

However, we then realize that once we have postulated that, like in GRWm, the density
of matter is given in this way with, say, A = M(x) the mass density at x, all other ‘values’
are of no relevance. They are superfluous, as they do not influence how much matter is where,
and thus do not influence the positions of pointers or the shape of ink on paper. They are truly
hidden variables and, indeed, can be deleted from the theory without unpleasant consequences
just like the ether in relativistic mechanics—yet unlike the particles in Bohmian mechanics.
Thus, if we take the primitive ontology seriously, we should restrict the ‘criterion for events’
to, say, the mass density M(x). Moreover, since we want to regard the ‘value’ of M(x) as the
density of matter, we do not want it to be often ‘indefinite’. We may thus prefer to take ξ to
be, instead of the eigenvalue of M(x), the value that would in orthodox quantum mechanics
be regarded as its average,

ξ = m(x) = 〈ψPLC(x)|M(x)|ψPLC(x)〉. (34)

This theory, if it can be made rigorous, could be regarded as a relativistic version of GRWm.

4. Outlook: a Bohm-like model for electromagnetism and gravity

In this last section, I propose some quite concrete but speculative model for how to include
gravity into a Bell-type quantum field theory. Previous proposals for Bohm-like theories
of gravity are based on a wavefunction on ‘superspace’ (i.e., the space of all Riemannian
3-geometries), guiding a point g(t) in superspace as the actual geometry of space at time t
[44, 48, 65], but I follow here a different path.

The standard way of obtaining a quantum theory (such as quantum mechanics, quantum
electrodynamics (QED), and quantum gravity) is by quantization of a known classical theory.
I will describe an alternative path, inspired by Bohmian mechanics. It is obvious that
quantization as a method of obtaining quantum theories has its limitations, as one would
not have guessed the existence of spin, or the Dirac equation, in this way. Even less meaning
is attributed to quantization rules from the Bohmian perspective, since quantization rules focus
on the operators as observables, but these are no longer the central objects of the theory (they
need not even be mentioned for defining the theory), they are not obtained by a quantization
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postulate (but emerge from the law of motion as the mathematical objects encoding the
statistics of results of experiments), and their non-commutativity is not regarded as the central
innovation of quantum theory (because the non-commuting operators are not regarded as a
kind of paradoxical reality). From the Bohmian perspective, quantization is rather the inverse
operation to taking the classical limit.

The questions one naturally asks when trying to define a Bohmian theory involve how to
write evolution laws for the particles and the wavefunction guiding them. Thus, for example,
the programme of finding all covariant linear wave equations (associated particularly with the
names of Dirac and Wigner) is more in the Bohmian spirit than quantization.

4.1. Photons

In the Bohmian framework, it seems a natural assumption to me that the word ‘photon’
refers to an actual particle (with a position, of course!). I recognize that there are other
possibilities, such as a field ontology [13], or perhaps no beables at all associated with the
electromagnetic quantum field [5]. But the most naive, most obvious, and simplest possibility
seems that of photon trajectories, given the striking parallels between the behaviour of light
and that of matter, such as interference and entanglement. Indeed, if I should list the crucial
differences between photons and electrons, I would mention mass, charge and spin, and the
mere difference in these parameters does not suggest to me a difference in ontology, such as
electrons being particles and photons being fields [13] (or nothing at all [5, 43], or even photons
being fields and electrons being nothing [68]). I would also include in the list that photons
are bosons while electrons are fermions, and again, the mere fact that the wavefunction is
symmetric in one case and anti-symmetric in the other does not suggest to me a difference in
ontology. Thus, photon trajectories seem like a good starting hypothesis. And indeed, it is not
difficult to write down equations for Bohmian trajectories for bosonic mass-0, charge-0, spin-1
particles [38, 59].

4.2. Dynamical configuration space

Because of the similarity between electromagnetism and gravity, it also seems a good starting
hypothesis that there should be graviton trajectories as well. And again, it is not difficult to
write down equations for Bohmian trajectories for bosonic mass-0, charge-0, spin-2 particles,
as gravitons are supposed to be. But introducing photon and graviton particles is not enough
for obtaining a Bohm-like theory of electromagnetism and gravity, for several reasons as
follows:

(i) Such equations assume a metric (i.e., a spacetime geometry) as given, and we do not want
to assume a fixed background metric. Instead, we want a theory of gravity to create its own
metric, a dynamical metric. The metric is involved, for example, in the connection (i.e.,
Christoffel symbols) needed for defining the (covariant) derivatives of the wavefunction
that occur in the appropriate Schrödinger equation (the Dirac equation for electrons, and
others for photons and gravitons).

(ii) Something similar can be said of electromagnetism, since the derivative that occurs in the
Dirac equation involves (a U(1) gauge connection corresponding to) the electromagnetic
vector potential.

(iii) There is another place where a spacetime metric is needed. When we consider Bohmian
trajectories in Euclidean 3-space, then the Euclidean geometry is one of the mathematical
objects needed for making physical sense of the trajectories. That is why we should
count the spacetime geometry as a part of the primitive ontology. If I told you merely
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the coordinates of the particles in my favorite coordinate system but not the metric
in this coordinate system, you would not know anything useful because there exist
diffeomorphisms R3 → R3 that map any given N points to any other given N points.
The distances between the points carry the relevant information about, for example, what
is written in a newspaper.

4.2.1. Evolving geometry of configuration space. This suggests to introduce, in addition
to photons and gravitons, a dynamical metric. In fact, item (i) asks for a different kind
of metric than item (iii): not a metric gµν on spacetime M , but instead a metric �gστ

on configuration spacetime �M . What is that, configuration spacetime? It is the set
on which the wavefunction � is defined. In non-relativistic quantum mechanics of N
particles, it is �MN = R3N+1 = (space)N × (time); in relativistic quantum mechanics, we
may take it to be �MN = M N ; if we use a time foliation F in the spacetime manifold
M , we may set �MN = ⋃

�∈F �N , which is a (3N + 1)-dimensional submanifold of
M N . For identical particles, divide out the action of permutations (after subtracting the
coincidence configurations). For a variable number N of particles, form the (disjoint) union
�M = ⋃∞

N=0
�MN .

We can form a metric �gστ on �MN once we have a metric gµν on spacetime M by
combining N copies of gµν when forming M N (and then, if we use a time foliation, restricting
the metric from M N to the submanifold �MN ). But I propose to do the opposite: Obtain gµν

from �gστ and treat �gστ as an independent variable governed by a law of its own. The rule
for obtaining g from �g is to insert the actual configuration,

g(x) = �g(Q ∪ x). (35)

I will make this precise in a moment. Before, I remark that the relevant wave equations for
�, such as the Dirac equation on �M , use �gστ as given, but do not require that �gστ is of
product form (i.e., that it is obtained from N copies of a 4-metric gµν). I further remark that
the construction (35) works only if we use a time foliation and allow a variable number of
particles, and it works more easily if, as I shall assume now, ‘particles are just points’ (in the
sense explained in the end of section 3.1.3); otherwise, one would need to select the particle
species of x. We thus set

�(�) = {q ⊂ � : #q < ∞}, �M =
⋃

�∈F

�(�). (36)

The set �(�) can be regarded as the configuration space at ‘time’ �. Together, these sets
form a foliation

�F = {�(�) : � ∈ F } (37)

of �M , which I will also call the ‘time foliation’.
To make precise equation (35), we associate with every time leaf � ∈ F the actual

configuration Q� ∈ �(�), and first define the Riemannian metric on � as the metric that the
next particle would see. That is, if x ∈ � and u, v ∈ Tx� (the tangent space at x) then

gµν(x)uµvν = �gστ (Q� ∪ x)ũσ ṽτ (38)

with ũ, ṽ ∈ TQ�∪x�(�) being the appropriate lifts of u, v. To define the timelike and mixed
components of gµν , we introduce the vector field �nσ on �M as the unit normal vector field of
the foliation �F , that is, �nσ is orthogonal, relative to �gστ , on �(�). Since

TQ�∪x
�M ⊆ TxM ⊕

⊕
y∈Q�

TyM , (39)
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we can consider the component of �nσ (Q� ∪ x) lying in TxM , multiply it by
√

#Q� + 1, call
the result nµ(x), and define it to be the unit normal on � relative to gµν , i.e., nµnνgµν = 1 and
uµnνgµν = 0 for all u ∈ Tx�. This completes the definition of gµν . (The factor

√
#Q� + 1

is supposed to compensate for the fact that a tangent vector in M N obtained by combining N
unit tangent vectors in M has a length

√
N .)7

Thus, a metric on configuration spacetime, together with particle trajectories and a time
foliation, defines a metric on spacetime, schematically

�gστ + Q + F −→ gµν. (40)

But where does the metric �g on configuration spacetime �M come from? I propose that it be
generated by an evolution law of its own.

The most obvious possibility seems to be the higher dimensional analogue of the Einstein
field equation (what could be called the �Einstein equation), i.e., the Einstein equation on �M :

�Rστ − 1
2

�R�gστ = κ�Tστ , (41)

where �Rστ is the Ricci tensor of �g, �R is its scalar curvature, κ is the gravitation constant,
and the reader should keep in mind that �g is a Lorentzian metric in the sense that on the
N-particle sector �MN of �M , which is a (3N + 1)-dimensional manifold, �g has the signature
(+−−−· · ·), with one timelike direction and 3N spacelike ones. I will specify the right-hand
side of (41) below. It is true in any dimension, not just four, that (41) is an evolution equation
of second order and determines (up to diffeomorphisms) the geometry on all of �MN if one
specifies, on a (suitable) initial hypersurface, say �(�), a Riemannian metric �g|�(�) and the
extrinsic curvature8.

In addition, I propose the following equation governing the relation between �g and �F :

�∇σ
�nτ − �∇τ

�nσ = 0, (42)

where �∇ is the covariant (Levi-Cività) derivative defined by the metric �g. This equation is
the cousin of (26). But whereas we regarded (26) as an evolution law for F given the metric
gµν , (42) is better regarded as a part of the evolution law for �gστ . Indeed, for constructing
successively the objects of the model, one might first choose the manifold M (without metric)
and an arbitrary foliation F , obtain from this the manifold �M and the foliation �F by (36)
and (37), then solve (41) and (42) together to obtain �gστ . Equation (26) then follows from the
definition of gµν .9 (Then again, equations (41) and (42) may well put topological constraints
on the possible choices for M and F .) Also, (42) could be replaced with a stronger version10.

7 Moreover, a lift ũ ∈ Tq∪x
�M is now defined for all tangent vectors u ∈ TxM , not only those tangent to the time

leaf �, if we use �nσ and nµ. We start with writing uµ = vµ + snµ(x), with vµ being the projection of uµ to Tx�

and s = uµnµ, and set ũσ = ṽσ + s�nσ (q ∪ x). Then the mapping u �→ ũ is an isometry onto its image.
8 This I learned from Gerhard Huisken.
9 Here is how. For infinitesimally close time leaves � and �′, the distance (defined by �g) between the lifts
�(�), �(�′) is, by (42), constant along every sector �MN ∩ �(�). Put differently, there is an infinitesimal number
ds so that for every q ∈ �MN ∩ �(�), q + �n(q)ds lies on �(�′). Therefore, for arbitrary but fixed Q� ∈ �(�) and
all x ∈ �, by setting q = Q� ∪ x, we obtain that x + n(x)(#Q� + 1)−1/2ds, being the x component of q + �n(q)ds,
lies on �′. Thus, the distance (defined by g) between � and �′ is constant along �, which is what (26) expresses.
10 Since (42) expresses that the timelike distance (defined by �g) between two nearby time leaves �(�) and �(�′) is
constant over every connected subset of �(�), but since the manifold �(�) is not connected, it is a natural idea to
make the law a bit stronger than (42) by postulating that the distance between �(�) and �(�′) be globally constant,
so that the constant is the same in every sector �MN . This stronger law restricts the possibilities for �g, which is
desirable. Indeed, while the �Einstein equation (41) alone determines �g only up to diffeomorphisms of �M , it would
be desirable to determine �g uniquely up to lifted diffeomorphisms of M . This is more than even the stronger version
of (42) achieves, so maybe even further laws are needed here.
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The source term �T should consist of two contributions, �T = �Tparticles + �Te.m. (with
e.m. = electromagnetism), or more for further gauge fields. I could imagine that a reasonable
particle term could be something like11

(�Tparticles)στ = �nσ
�nτ

∑
1�i<j�N

mimjδ(xi − xj ). (43)

This source term is concentrated on the coincidence configurations; since these lie outside,
or in a sense on the boundary, of �M , the expression should be understood in the following
way. Recall that one often treats δ source terms by excluding the source point from the space
(e.g., for obtaining the Schwarzschild solution of the Einstein equation [47] or the Coulomb
potential from the Poisson equation, and for the Schrödinger equation [1]). Similarly here, one
may solve the vacuum equation on the space without coincidence configurations, with properly
diverging asymptotic conditions for �g(q) as q approaches a coincidence configuration. As a
consequence, �g should be singular on the coincidence configurations. Next

(�Te.m.)στ = �F ρ
σ

�Fρτ + ∗�F ρ
σ ∗ �Fρτ , (44)

where ∗ denotes the Hodge operator and �Fστ is a 2-form on �M , the curvature (or exterior
derivative) of a U(1) gauge connection (which I write as a 1-form �Aσ ) on �M . Expression (44)
is literally the same formula as for the stress–energy tensor of the classical Maxwell field, but
now the tensors live on �M . Since the Dirac equation on �M requires a metric �gστ on �M
and a U(1) gauge connection �Aσ on �M , it seems natural to treat both �gστ and �Aσ on an
equal footing. We thus have three objects living on �M :

�gστ ,
�Aσ ,�. (45)

And �Aσ should have its own evolution law, too. The simplest such law seems to be the higher
dimensional analogue of the Maxwell field equations (what could be called the �Maxwell
equations), i.e., the Maxwell equations on �M :

d�F = 0, �∇σ
�F στ = 4π�J τ , (46)

where d means exterior derivative and �J is the source term. In classical electrodynamics, it
would be the charge current density vector. In our case, I could imagine that a reasonable
source term could be something like

�Jσ = �nσ

∑
1�i<j�N

2qiqj δ(xi − xj ), (47)

with qi being the charge of particle i. (As the δ term is concentrated on the coincidence
configurations, it should be understood in the same sense as in (43).) Unlike in classical
electrodynamics, this source term involves the product of the charges.

We deal here with a kind of fields �g, �A on configuration space. They are different
from fields on space, such as classical fields, and different from quantum fields, which are
operator-valued fields on space. Fields on configuration space are a bit like wavefunctions,
as wavefunctions, too, are functions on configuration space. But they resemble more the
potential V of classical and quantum mechanics. A big difference is that potentials are usually
regarded as fixed functions (think of the Coulomb potential on the configuration space of N
particles) and not as functions obtained by solving a differential equation. Thus, �g and �A are
better thought of as evolving potentials than as ‘fields’, a word that would suggest something
similar to either classical or quantum fields.

11 However, a problem with this source term is that, since the masses mi may depend on the particle species, it
conflicts with the concept that ‘particles are just points’, and thus with the use of �(�) as the configuration space.
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4.2.2. Kiessling. A pioneer of the idea of evolving potentials is Michael Kiessling. To my
knowledge, he was the first to consider evolution equations for potentials on configuration
space. In his two-part work [52, 53], he attacks several problems at the same time. He deals
with the ultraviolet divergence of classical and quantum electrodynamics (using the Born–
Infeld equations instead of the Maxwell equations) and suggests steps towards extending
Bohmian mechanics to QED, while introducing evolving potentials on configuration space
and making the equations as relativistic as possible12. I have borrowed the notation �A from
him, even though in his model, ‘�A’ denotes something slightly different. His �A corresponds,
said somewhat simplified, to a potential on 3-space that depends on the electron configuration,
in the sense that it is a function on R3 × R3N in a setting with N electrons. This is different
from what I described above, where the �Aσ field was a function on configuration space,
corresponding to a function on R3N in a setting with N electrons. Kiessling also has such a
function on configuration space R3N , which is needed as the gauge connection for defining
the evolution of the wavefunction; he calls it Ã and constructs it from his �A function by
inserting the actual position of an electron into the first slot. I have chosen here the somewhat
simpler possibility of postulating directly the kind of potential needed for the Dirac equation:
a one-form �Aσ on configuration space.

4.2.3. On the structure of the model. Note that the evolution of �g and �A does not depend
on the actual particle configuration, and not on the wavefunction. Thus, the model I am
presenting has a three-level hierarchical structure:

�g, �A −→ � −→ Q,g. (48)

The metric and gauge connection influence but are not influenced by the wavefunction, which
influences but is not influenced by the particle trajectories. The metric g is a function of �g

and Q. It has sometimes been objected to Bohmian mechanics that some principle of action
and reaction is violated if the evolution of the wavefunction does not depend on the actual
configuration. Here we encounter the same situation twice! I feel this makes the theory elegant
and simple.

Electromagnetism has a dual structure in this theory, consisting partly of the evolving
potential �Aσ on configuration space and partly of photons. This is surprising since classically,
there is only one object, the vector potential Aµ. Gravity has even a three-part structure in
this theory: the metric �gστ on configuration spacetime, the graviton particles and the metric
gµν on spacetime, while classically, there is only gµν . Since �gστ is presumably singular
on the coincidence configurations, gµν should be singular at the locations of all particles; in
particular, gµν should be more strongly curved in the vicinity of every particle, which seems
reasonable.

As the output of the theory (its primitive ontology) I regard the triple

(M , g,Q), (49)

where Q = ⋃
�∈F Q� is the set of all spacetime points through which a particle passes.

Thus, (49) is a Lorentzian manifold with world lines on it. This is what has to be compared
to the real world. All other variables, �gστ ,

�Aσ ,F , � had merely the role of generating this
output.

Note that two triples related by a diffeomorphism are to be regarded as physically
equivalent. Thus, strictly speaking, the output of the theory is a diffeomorphism class of
triples (49). Since we expect Q to be random, the equations of the theory, together with the

12 He also uses a time foliation (in his case given simply by some Lorentz frame) but tries to get on without it as long
as possible.
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initial data, should determine a probability distribution over the diffeomorphism classes of
triples (49). In the discussion so far, I have treated the manifold M as if it was given and
fixed, but this should not be taken too seriously. I imagine that this attitude could be relaxed in
favour of one regarding M itself as determined by the evolution laws, such as the � Einstein
equation (41) and (35).

4.2.4. No multi-time evolution. The introduction of evolving potentials on configuration
space has consequences for the nature of the wavefunction. Recall that a multi-time
wavefunction needs several Schrödinger equations, one for each time coordinate, and that
these equations are consistent only if condition (29) is satisfied. In the presence of potentials
on configuration space, the multi-time evolution of (the N-particle sector of) the wavefunction
is consistent if and only if the potentials (i.e., the metric �gστ and the gauge connection �Aσ )
factorize, i.e., if they are of product form, �g = g(1)⊗· · ·⊗g(N) and �A = A(1)⊗· · ·⊗A(N). This
is generically not the case, and thus the wavefunction is defined only on �M , for configurations
that are simultaneous relative to the time foliation. For example, for N distinguishable particles,
ψ is defined on

⋃
�∈F �N ⊂ M N but not on all of M N . In other words, for 3-surfaces �

that are not time leaves there need not be an answer to the question, ‘what is the quantum state
on �’?

As a consequence, the time foliation becomes relevant at an early stage of the definition
of the theory. It is not merely needed for defining the Bohmian trajectories, but already for
defining the evolution of the wavefunction.

4.2.5. Comparison with QED. Let us consider the case in which the metric �gστ is flat (the
appropriate product of Minkowski metrics) and the foliation F is flat, too, i.e., consists of
parallel 3-planes corresponding to one fixed Lorentz frame. Then a possible solution for the
�Maxwell equation (46) and (47) on �MN is

�A0 =
∑

1�i<j�N

qiqj

|xi − xj | ,
�Aσ = 0 for σ 
= 0, (50)

the Coulomb potential. The model then has become a Bohmian version of QED in the Coulomb
gauge. Let me explain.

When quantizing the Maxwell equation (see, e.g., [16]), it is recommendable, because
some of the Maxwell equations are constraints, to split the degrees of freedom of the classical
Maxwell field into the dynamical ones (the transversal field in the Coulomb gauge) and the
fixed ones (the longitudinal field, in effect the Coulomb potential, in the Coulomb gauge),
and then quantize only the dynamical ones. As a result, the quantized field corresponds to
photons, while the Coulomb potential remains as a contribution to the Hamiltonian. The model
I outlined agrees with that, as it contains, in addition to the photons, the Coulomb potential in
the form of �Aσ .

The field operators Âµ(x), for x ∈ M , of QED then should arise according to

Âµ = multiplication by �A + photon creation + photon annihilation. (51)

More precisely, for x ∈ � and u ∈ TxM ,

uµÂµ(x)�(q) = ũσ �Aσ (q ∪ x)�(q) + uµ(a†
µ(x)�)(q) + uµ(aµ(x)�)(q) (52)

for all q ∈ �(�), where ũ is the lift of u to Tq∪x
�M and a†

µ(x) and aµ(x) are the photon creation
and annihilation operators in position representation (at location x ∈ �). This equation reflects
the dual structure of electromagnetism in this model, consisting of (i) the evolving potential
�A and (ii) the photons.
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4.2.6. Comparison with quantum gravity. Can one define operators ĝµν(x), for x ∈ M ,
from the model that could be regarded as representing the field operators of the gravity field?
I imagine that the definition could be, schematically,

ĝµν = multiplication by �g + graviton creation + graviton annihilation. (53)

That is, for x ∈ �, one could define an operator acting on H� by

ĝµν(x)�(q) = �g(q ∪ x)�(q) +
(
a†

µν(x)�
)
(q) + (aµν(x)�)(q) (54)

for all q ∈ �(�), where a†
µν(x) and aµν(x) are the graviton creation and annihilation operators

in position representation (at location x ∈ �), and �g(q ∪ x) is to be understood in the same
way as in the construction of gµν from �gστ . It would be interesting to find out whether the
model fits together in this way with known approaches to quantum gravity.

Conversely, we may start from a given quantum gravity theory and ask what data we need
to construct a primitive ontology similar to the one of the present model, i.e., particle world
lines and a metric gµν . Here is my guess. Suppose we are given a manifold M , a foliation
F , a Hilbert space H , a state vector � ∈ H (which is fixed in the Heisenberg picture),
operators ĝµν(x) acting on H for every x ∈ M , and a POVM P̂� on �(�) acting on H for
every � ∈ F . (The time evolution is encoded, according to the Heisenberg picture, in the
family of position POVMs P̂� .) Then the methods of Bell-type QFT should provide random
trajectories Q = (Q�)�∈F , and we could define

gµν(x) = 〈�|P̂�(Q�)ĝµν(x)P̂�(Q�)|�〉
〈�|P̂�(Q�)|�〉 (55)

with � the time leaf containing x. (This formula is a kind of inversion of (54). The
multiplication operator by �g(q ∪ x) is recovered from ĝµν(x) by taking its diagonal part
in the position representation defined by P̂� .)

4.2.7. A technical note on spin spaces. Spin spaces normally carry a mathematical structure
related to the spacetime metric. In the Dirac formalism, this structure is represented by the
gamma matrices γ (x) ∈ CTxM ∗ ⊗ Dx ⊗ D∗

x (where ∗ denotes the dual space and Dx the
complex four-dimensional Dirac spin space) and related to the spacetime metric gµν by

γµγν + γνγµ = 2gµν. (56)

Equivalently, in the two-spinor formalism [61], this structure is represented by an anti-
symmetric bilinear form εAB(x) on complex two-dimensional spin space Sx and an
isomorphism δ : Sx ⊗ Sx → CTxM (with Sx the complex conjugate space of Sx), which are
related to the metric by

εABε̄A′B ′ = δ
µ

AA′δ
ν
BB ′gµν. (57)

Since this structure, either γµ or εAB and δ
µ

AA′ , is needed for writing down the Dirac equation
and the wave equations for photons and for gravitons, we need to define from �g corresponding
structures �γ, �ε and �δ on �M .

On the N-particle sector �MN , the analogues of γµ and εAB at x = (x1, . . . , xN) ∈ �MN

are �γµ1...µN
and �εA1...AN ,B1...BN

, defined on the spin space Dx1 ⊗ · · · ⊗ DxN
, respectively,

Sx1 ⊗· · ·⊗SxN
. For example, in case of a given background 4-metric gµν (with accompanying

γµ and εAB on M ) one would set (abbreviating µ1, . . . , µN as �µ etc)

�γ�µ(x) = γµ1(x1) ⊗ · · · ⊗ γµN
(xN), (58)

�ε �A �B(x) = εA1B1(x1) · · · εANBN
(xN), (59)
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�δ
�µ
�A �A′(x) = δ

µ1

A1A
′
1
(x1) · · · δµN

ANA′
N
(xN). (60)

The obvious analogues of (56) and (57) are the following relations between �γ, �ε, �δ and an
object g̃�µ�ν :

S(�γ�µ�γ�ν) = g̃�µ�ν, (61)

where S means symmetrization (so that the expression becomes symmetric in each pair of
indices µi, νi), respectively,

�ε �A �B
�ε̄ �A′ �B ′ = �δ

�µ
�A �A′

�δ�ν
�B �B ′ g̃�µ�ν . (62)

The object g̃ is a metric on the product space Tx1M ⊗ · · · ⊗ TxN
M , whereas �g is a metric on

(the subspace Tx
�M of) the direct sum Tx1M ⊕ · · · ⊕ TxN

M . To obtain an object like g̃ from
�g, the simplest rule I can think of is to set, for ui, vi ∈ Txi

M and ũi , ṽi their lifts in Tx
�M ,

g̃�µ�ν(x)

N∏
i=1

u
µi

i v
νi

i =
N∏

i=1

�gστ (x1, . . . , xN)ũσ
i ṽτ

i . (63)

Then �γ, �ε and �δ can be regarded as defined by (61) and (62).

4.3. The physical Hilbert space

In order to make the Hamiltonian bounded from below (to avoid the catastrophic behaviour
that two interacting particles become faster and faster while their energies approach ∞ and
−∞, respectively), one has to restrict the Hilbert space. Thus, there are two Hilbert spaces
to be considered, the extended Hilbert space Hext which contains also the negative-energy
states and the physical Hilbert space Hphys which contains only the physical states, roughly
those with purely positive energy contributions. For example, for the Dirac equation of one
particle in Minkowski spacetime, Hext = L2(R3, C4), and Hphys is usually defined as the
positive spectral subspace of the free Dirac Hamiltonian. This leads to the question how to
define Hphys in our model. Already in the case of a Dirac particle in a curved (non-stationary)
background spacetime geometry, there is, to my knowledge, no canonical, natural way of
selecting Hphys.13

I see two possibilities. First, it might be possible to use the time foliation for selecting
Hphys. Second, we might give up the attempt at defining Hphys and to obtain it instead by
evolving it as a part of the state description. In that case, we would specify Hphys(t = 0) at
time 0 as a part of the initial data, regard it as a part of the variables of the theory, and obtain
Hphys(t) by some evolution law14.

In our case, Hext is, for every � ∈ F , the tensor product of several Hilbert spaces, one
for electrons, one for positrons, one for left-handed photons, one for right handed photons,

13 Specifically, the following difficulties arise. The spectral gap between −mc2 and mc2, present for the free Dirac
operator in Minkowski spacetime, may disappear in curved spacetime. To split the spectrum of the Dirac operator at
zero seems arbitrary and is not gauge invariant. The fact that the free Dirac operator is concentrated on the (future
and past) mass shell in the Fourier space can no longer be exploited because Fourier transformation is not defined in
a generic curved spacetime. Similarly, though perhaps less sharply, the question how to define Hphys arises already
in Minkowski spacetime in the presence of a (strong) external background electromagnetic field Aµ; see [55] for one
viewpoint.
14 The simplest such law that I could think of is this. Begin with introducing a time coordinate t : �M → R whose
level sets are the time leaves �(�) ∈ �F . Use �gστ to form the vector field �∇ρ t/(�∇σ t�gστ

�∇τ t) on �M . Use the
flow defined by this vector field for identifying �(�(t)) with �(�(0)), and the connection �Aσ for identifying their
bundles of spin spaces. This yields a linear operator It : Hext,�(0) → Hext,�(t), not necessarily unitary, and we could
take Hphys(t) = It (Hphys(0)).
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and so on. The one for electrons, for example, is the subspace of anti-symmetric functions in
L2(�̂(�), B), where �̂(�) is the universal covering space of �(�) and B is the appropriate
bundle of spin spaces. The Hamiltonian H then needs to include suitable (creation and
annihilation) terms that keep the wavefunction � from leaving Hphys. For these terms I have
no concrete proposal. Once these terms are specified, the theory has a four-level hierarchy:

�g, �A −→ Hphys,H −→ � −→ Q,g. (64)

4.4. The time foliation

Can one observe the time foliation? That is, can one determine experimentally which 3-
surfaces the time leaves are? If F = FBB (the foliation defined in section 3.3.1 of the
surfaces of constant distance from the big bang), then of course one can, by determining
the age of the universe at every point. (Moreover, FBB may coincide with the rest frame of
the cosmic microwave background radiation.) But this has nothing to do with quantum theory,
and thus should not count as a serious observation of the time foliation. To the extent that
the existence of a time foliation would violate relativity, it seems that a serious observation
of F should constitute an experimental violation of relativity. The fact that such violations
are not known suggests that F be unobservable. But presumably the model I have presented
entails that there are quantum experiments observing the time foliation, as I see no reason in
the model why it should be unobservable. It would be interesting to think up an experiment
for which the model predicts that its result reveals the time foliation.
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[32] Dürr D, Goldstein S and Zanghı̀ N 2004 Quantum equilibrium and the role of operators as observables in
quantum theory J. Stat. Phys. 116 959–1055 (Preprint quant-ph/0308038)

[33] Georgii H-O and Tumulka R 2005 Global existence of Bell’s time-inhomogeneous jump process for lattice
quantum field theory Markov Processes Relat. Fields 11 1–18 (Preprint math.PR/0312294)

[34] Georgii H-O and Tumulka R 2005 Some jump processes in quantum field theory Interacting Stochastic Systems
ed J-D Deuschel and A Greven (Berlin: Springer) pp 55–73 (Preprint math.PR/0312326)

[35] Ghirardi G C 1999 Some lessons from relativistic reduction models Open Systems and Measurement in
Relativistic Quantum Theory ed H-P Breuer and F Petruccione (Berlin: Springer) p 117–152

[36] Ghirardi G C, Pearle P and Rimini A 1990 Markov processes in Hilbert space and continuous spontaneous
localization of systems of identical particles Phys. Rev. A 42 78–89

[37] Ghirardi G C, Rimini A and Weber T 1986 Unified dynamics for microscopic and macroscopic systems Phys.
Rev. D 34 470–491

[38] Ghose P, Majumdar A S, Guha S and Sau J 2001 Bohmian trajectories for photons Phys. Lett. A 290 205–13
(Preprint quant-ph/0102071)

[39] Gleason A M 1957 Measures on the closed subspaces of a Hilbert space J. Math. Mech. 6 885–93
[40] Goldstein S 1998 Quantum theory without observers: I Physics Today, March 1998, pp 42–6

Goldstein S 1998 Quantum theory without observers: II Physics Today, April 1998, pp 38–42

http://dx.doi.org/10.1103/PhysRevA.53.2062
http://www.arxiv.org/abs/quant-ph/9510027
http://dx.doi.org/10.1103/PhysRev.85.166
http://dx.doi.org/10.1143/PTP.9.273
http://www.arxiv.org/abs/quant-ph/0310056
http://dx.doi.org/10.1088/0305-4470/39/50/008
http://www.arxiv.org/abs/quant-ph/0509177
http://www.arxiv.org/abs/quant-ph/9601013
http://dx.doi.org/10.1088/0305-4470/34/46/310
http://www.arxiv.org/abs/quant-ph/0110007
http://dx.doi.org/10.1023/B:JOSS.0000028061.97843.84
http://www.arxiv.org/abs/quant-ph/0209051
http://dx.doi.org/10.1103/PhysRevA.60.2729
http://www.arxiv.org/abs/quant-ph/9801070
http://dx.doi.org/10.1088/0305-4470/36/14/315
http://www.arxiv.org/abs/quant-ph/0208072
http://dx.doi.org/10.1103/PhysRevLett.93.090402
http://www.arxiv.org/abs/quant-ph/0303156
http://dx.doi.org/10.1007/s10701-004-1983-9
http://www.arxiv.org/abs/quant-ph/0311127
http://dx.doi.org/10.1007/s00220-004-1242-0
http://www.arxiv.org/abs/quant-ph/0303056
http://dx.doi.org/10.1088/0305-4470/38/4/R01
http://www.arxiv.org/abs/quant-ph/0407116
http://dx.doi.org/10.1007/BF01049004
http://www.arxiv.org/abs/quant-ph/0308039
http://dx.doi.org/10.1023/B:JOSS.0000037234.80916.d0
http://www.arxiv.org/abs/quant-ph/0308038
http://www.arxiv.org/abs/math.PR/0312294
http://www.arxiv.org/abs/math.PR/0312326
http://dx.doi.org/10.1103/PhysRevA.42.78
http://dx.doi.org/10.1103/PhysRevD.34.470
http://dx.doi.org/10.1016/S0375-9601(01)00677-6
http://www.arxiv.org/abs/quant-ph/0102071


3272 R Tumulka

[41] Goldstein S 2001 Bohmian Mechanics Stanford Encyclopedia of Philosophy ed E N Zalta (published online by
Stanford University, http://plato.stanford.edu/entries/qm-bohm/)

[42] Goldstein S, Taylor J, Tumulka R and Zanghı̀ N 2005 Are all particles identical? J. Phys. A: Math.
Gen. 38 1567–76 (Preprint quant-ph/0405039)

[43] Goldstein S, Taylor J, Tumulka R and Zanghı̀ N 2005 Are all particles real? Stud. Hist. Phil. Mod.
Phys. 36 103–12 (Preprint quant-ph/0404134)

[44] Goldstein S and Teufel S 2001 Quantum spacetime without observers: ontological clarity and the conceptual
foundations of quantum gravity Physics Meets Philosophy at the Planck Scale ed C Callender and N Huggett
(Cambridge: Cambridge University Press) pp 275–89 (Preprint quant-ph/9902018)

[45] Goldstein S and Tumulka R 2003 Opposite arrows of time can reconcile relativity and nonlocality Class.
Quantum Grav. 20 557–64 (Preprint quant-ph/0105040)

[46] Goldstein S and Tumulka R 2001 Lorentz-invariant first-order many-particle dynamics, Unpublished notes
[47] Hawking S W and Ellis G F R 1973 The Large Scale Structure of Space-Time (Cambridge: Cambridge University

Press)
[48] Holland P R 1993 The Quantum Theory of Motion: An Account of the de Broglie–Bohm Causal Interpretation

of Quantum Mechanics (Cambridge: Cambridge University Press)
[49] Horton G and Dewdney C 2004 A relativistically covariant version of Bohm’s quantum field theory for the

scalar field J. Phys. A: Math. Gen. 37 11935–44 (Preprint quant-ph/0407089)
[50] Hyman R, Caldwell S and Dalton E 2004 Bohmian mechanics with discrete operators J. Phys. A: Math.

Gen. 37 L547–58 (Preprint quant-ph/0401008)
[51] Kent A 1989 ‘Quantum jumps’ and indistinguishability Mod. Phys. Lett. A 4 1839–45
[52] Kiessling M K-H 2004 Electromagnetic field theory without divergence problems: 1. The Born legacy J. Stat.

Phys. 116 1057–122
[53] Kiessling M K-H 2004 Electromagnetic field theory without divergence problems: 2. A least invasively quantized

theory J. Stat. Phys. 116 1123–59
[54] Kochen S and Specker E P 1967 The problem of hidden variables in quantum mechanics J. Math. Mech. 17

59–87
[55] Lieb E H and Loss M 2002 Stability of a model of relativistic quantum electrodynamics Commun. Math.

Phys. 228 561–88 (Preprint math-ph/0109002)
[56] Maudlin T 1994 Quantum Non-Locality and Relativity: Metaphysical Intimations of Modern Physics (Oxford:

Blackwell)
[57] Maudlin T 2007 Non-local correlations in quantum theory: some ways the trick might be done. Einstein,

Relativity, and Absolute Simultaneity ed Q Smith and W L Craig (London: Routledge) at press
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